X-ray Imaging Techniques, Applications and Detectors

Mark Rivers
Center for Advanced Radiation Sources
The University of Chicago

Outline

- Techniques and Applications
- Detectors
- Role of DOE labs

Perspective

- Run a national facility for earth-science research at APS.
- Techniques include diffraction, microXRF, spectroscopy, tomography
- Many detectors in use on the sector, all commercial
- 7 CCDs
 - 2 Bruker Smart systems for diffraction
 - 2 Roper systems for microtomography (lens-coupled)
 - 3 Roper visible light systems for emission spectroscopy and Raman scattering
- 3 multi-element Ge detectors for x-ray absorption spectroscopy and energy-dispersive diffraction
- Microspec (Oxford) wavelength spectrometer for high-energy resolution spectroscopy

X-ray Imaging Techniques and Applications

- Scanning soft x-ray microscopy
- Projection soft x-ray microscopy
- Radiography
- Absorption tomography
- Phase-contrast tomography
- Holography
- Diagnostics (focusing aid, particle beam size/position monitors)
- Scanning fluorescence techniques (not covered here, detectors are the same as EXAFS covered by others).

The XM-1 Soft X-ray Microscope at the Advanced Light Source

 $\lambda = 1.4$ nm - 5nm

X-Ray Microscopy at the ALS

- Mutually indexed visible and x-ray microscopes
- High throughput (up to a thousand images per day)
- Large image fields by montage assembly
- Easy access, user friendly

Organelle Details Imaged with Cryogenic Preservation and High Spatial Resolution

Cryo x-ray microscopy of 3T3 fibroblast cells

Magnetic X-Ray Microscopy

- High spatial resolution in transmission
- Bulk sensitive (thin films)
- Complements surface sensitive PEEM
- Good elemental sensitivity
- Allows applied magnetic field
- Insensitive to capping layers

Magnetic Domains Imaged at Different Photons Energies

FeGd Multilayer

1 µm

 $\hbar\omega = 704 \text{ eV}$ below Fe L-edges

Contrast reversal

 $\hbar\omega = 707.5 \text{ eV}$ Fe L₃-edge

 $\hbar\omega = 720.5 \text{ eV}$ Fe L₂-edge

S. Tsunashima / U. Nagoya and N. Tagaki / Sanyo

250 T LVP: BM Line

1000 T LVP: ID Line

GeoSoilEnviroCARS

CARS OPEN HOUSE

Oct. 30, 1999

Fig. LVP9. X-ray radiograph snapshots of a 0.3 mm diameter W sphere falling in sodium disilicate melt at 2.6 GPa and 1400C. Gaps between anvils about 0.5 mm. Sample was in a Pd capsule; top portion of the capsule can be seen as the dark contrast near the top of each snapshot. Radiographs captured by a CCD camera. Experiments performed by Reid et al. (1999) at GSECARS at the APS (13-BM-D) using white beam and the DIA apparatus.

Microtomography

- Allows study of internal structure of objects which cannot be sectioned
 - Too valuable
 - Too fragile
 - Too time-consuming
- Geoscience applications
 - Fractures and pores
 - Fluid transport
 - Waste encapsulation
 - Hydrocarbon reservoirs
- Mineral inclusions
 - High-pressure phases in diamonds
- Fossil morphology
- Others
 - Materials sciences, ceramics, etc.

Computed Microtomography

- Like medical CAT scanners, but with micron resolution
- Construct cross-sections of an object mathematically from multiple projections as object is rotated

Tomography of Fossils

- Many fossils are rare and cannot be physically sectioned
- Want to study internal morphology to understand function and evolution
- Need high-energy x-rays
- These images were collected at 40 keV with temporary single-bounce monochromator

Evolution of Marine Snails

(B. Price, M. Rivers; U. of Chicago)

Tomography of Diamonds

- Want to study inclusions in diamonds
- These inclusions are among the deepest samples of earth materials which are available
- Deepest diamonds are opaque
- Use tomography to locate inclusions, then use diffraction and spectroscopy to study them in-situ

Mineral Inclusions in Opaque Diamonds

(M. Rivers, U. of Chicago)

Carbonado diamond (E. Vicenzi, Princeton U.)

22 karat diamond with massive dendritic sulfide inclusion

(L. Taylor, U. Tennessee)

GeoSoilEnviroCARS ● National Science Foundation Site Visit ● May 24, 1999

Microtomography at 80 keV

- Studying Sr-Fe-Co oxide ceramics used for oxygen gas permeability
- 1 cm diameter, requires 80 keV
- Absorption depth in YAG phosphor crystal is > 1mm, need thick crystal. Y Ka fluorescence travels >100 microns, hard to get good spatial resolution
- Pixel size is 10 microns, resolution is >50 microns

Contrast enhancement by digital subtraction tomography

This 1cm diameter rock core was saturated with CsCl solution and images were taken above and below the Cs K absorption edge (36 keV). The difference image shows only the solution, which is present in the cracks.

36.0 keV, below Cs K absorption edge

36.2 keV, above Cs K absorption edge

Difference of above and below edge images

Detectors for Full-Field Imaging

- CCD detector is the workhorse.
- Positive characteristics
 - < 10 electron read noise</p>
 - Negligible dark current when cooled below –25C
 - High resolution (>1Kx1K)
 - Relatively rapid readout (.5-1MHz @ 16bits, 5-20 MHz @ 12 bits)
 - 16 bit dynamic range for large pixels, 12-14 bits for small pixels, determined by full-well capacity
 - Reasonable sensitivity from NIR to NUV

Deficiencies of CCDs for x-ray imaging: X-ray Coupling

- Direct illumination @ 10 keV
 - Thin Si is transparent, poor absorption efficiency
 - ~2 eV per electron/hole pair, 5000 electrons per x-ray
 - Full well capacity is only 50,000-500,000 electrons, = 10-100 x-rays.
 - Dynamic range (saturation/single photon) is thus only 10:1 to 100:1
- Situation is better for soft x-rays. At 200 eV only 100 electrons per x-ray, dynamic range is 500:1 to 5000:1.
- Radiation damage is a problem for high fluxes of hard x-rays

Deficiencies of CCDs for x-ray imaging: X-ray Coupling

- Polycrystalline phosphor and fiber-optic taper
 - Good x-ray conversion efficiency
 - Good light collection efficiency
 - Poor spatial resolution, >15 microns, determined by phosphor
 - Inflexible, can't change magnification
- Lens coupling with single-crystal phosphor
 - High resolution possible, < 1 micron
 - Trade off of x-ray conversion efficiency for spatial resolution, varies with phosphor thickness.
 - Poor light collection efficiency

Deficiencies of CCDs for x-ray imaging: Readout Time

- Readout time is 1-5 seconds for high-resolution
 CCD @ 16 bits
- This can be 10-1000 times larger than the exposure time for synchrotron experiments
- Multiple-readout ports are available on some chips, rarely implemented on commercial CCD detector systems

Detector Development for Imaging

- Better CCDs unlikely to be developed by DOE labs
- Better coupling of x-rays to CCDs structured phosphors, etc. could well be done
- Smaller detectors are being done well now
 - Fast gas proportional counters for scanning microscopy at BNL
 - Few-element Si detector for microscopy at BNL

Detector Development at BNL & Stony Brook

- Continuous flow gas proportional counter (Collaboration G. Smith and B. Yu, BNL)
 - Single photon detection
 - No dark count noise
 - Count rate limited to 2 MHz
 - No spatial resolution
 - High maintenance
 - 50 % quantum efficiency (entrance window)
- Integrating silicon detector with segmentation (Collaboration P. Rehak and G. DeGeronimo, BNL)
 - No flux limit
 - Flexible imaging modes
 - Analog device EM pickup
 - Noise is ~ 20 kHz photon count rate equivalent
 - High quantum efficiency (except entrance window)

Soft (250-800 eV) X-ray Scanning Microscopy: Detector Requirements

- Robust and reliable: ~15 different user groups / yr
- Linearity to high count rates: 2 MHz at NSLS; 15 MHz at ALS
- High dynamic range: signals as low as 5 kHz (dark field detection scheme)
- Low noise: ideally single photon sensitivity for highest S/N and elimination of pickup
- High quantum efficiency: Specimen are radiation dose sensitive
- Spatial segmentation matched to STXM geometry (critical illumination, Nomarski, differential phase contrast, dark field)
- Visible light sensitivity?

Thoughts on General Role of DOE Laboratories in Detector Development

- Personal perspective based on 17 years at DOE synchrotrons (NSLS and APS).
- There have been notable successes and some not-so-successful ventures.
 - Has there been any attempt to document the record at DOE labs and understand what types succeed and what do not?
- What is the right role of the labs relative to private industry?
- Labs should embark on detector development for:
 - Small-scale production projects when there is a critical need for the DOE synchrotron community and no prospect of commercialization
 - Larger prototypes only when there is an excellent prospect of commercialization. A single detector is rarely worth developing in the synchrotron field unless rapidly leads to commercialization